Statistical Manifolds with almost Quaternionic Structures and Quaternionic Kähler-like Statistical Submersions
نویسندگان
چکیده
In this paper we investigate statistical manifolds with almost quaternionic structures. We define the concept of quaternionic Kähler-like statistical manifold and derive the main properties of quaternionic Kähler-like statistical submersions, extending in a new setting some previous results obtained by K. Takano concerning statistical manifolds endowed with almost complex and almost contact structures. Finally, we give a nontrivial example and propose some open problems in the field for further research.
منابع مشابه
Quaternionic Kähler and Spin(7) Metrics Arising from Quaternionic Contact Einstein Structures
We construct left invariant quaternionic contact (qc) structures on Lie groups with zero and non-zero torsion and with non-vanishing quaternionic contact conformal curvature tensor, thus showing the existence of non-flat quaternionic contact manifolds. We prove that the product of the real line with a seven dimensional manifold, equipped with a certain qc structure, has a quaternionic Kähler me...
متن کاملQuaternionic Kähler Manifolds with Hermitian and Norden Metrics
Almost hypercomplex manifolds with Hermitian and Norden metrics and more specially the corresponding quaternionic Kähler manifolds are considered. Some necessary and sufficient conditions the investigated manifolds be isotropic hyper-Kählerian and flat are found. It is proved that the quaternionic Kähler manifolds with the considered metric structure are Einstein for dimension at least 8. The c...
متن کاملExplicit Quaternionic Contact Structures and Metrics with Special Holonomy
We construct explicit left invariant quaternionic contact structures on Lie groups with zero and non-zero torsion, and with non-vanishing quaternionic contact conformal curvature tensor, thus showing the existence of quaternionic contact manifolds not locally quaternionic contact conformal to the quaternionic sphere. We present a left invariant quaternionic contact structure on a seven dimensio...
متن کاملQuaternionic Reduction
The pseudo-Riemannian manifold M = (M, g), n ≥ 2 is paraquaternionic Kähler if hol(M) ⊂ sp(n,R)⊕sp(1, R). If hol(M) ⊂ sp(n, R), than the manifold M is called para-hyperKähler. The other possible definitions of these manifolds use certain parallel para-quaternionic structures in End(TM), similarly to the quaternionic case. In order to relate these different definitions we study para-quaternionic...
متن کاملalmost-quaternionic Hermitian manifolds
In this note we prove that if the fundamental 4-form of an almost-quaternionic Hermitian manifold (M,Q, g) of dimension 4n ≥ 8 satisfies the conformal-Killing equation, then (M,Q, g) is quaternionic-Kähler.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015